223 research outputs found

    Privacy in Inter-Vehicular Networks: Why simple pseudonym change is not enough

    Get PDF
    Inter-vehicle communication (IVC) systems disclose rich location information about vehicles. State-of-the-art security architectures are aware of the problem and provide privacy enhancing mechanisms, notably pseudonymous authentication. However, the granularity and the amount of location information IVC protocols divulge, enable an adversary that eavesdrops all traffic throughout an area, to reconstruct long traces of the whereabouts of the majority of vehicles within the same area. Our analysis in this paper confirms the existence of this kind of threat. As a result, it is questionable if strong location privacy is achievable in IVC systems against a powerful adversary.\u

    Diffusion and Interdiffusion in Binary Metallic Melts

    Full text link
    We discuss the dependence of self- and interdiffusion coefficients on temperature and composition for two prototypical binary metallic melts, Al-Ni and Zr-Ni, in molecular-dynamics (MD) computer simulations and the mode-coupling theory of the glass transition (MCT). Dynamical processes that are mainly entropic in origin slow down mass transport (as expressed through self diffusion) in the mixture as compared to the ideal-mixing contribution. Interdiffusion of chemical species is a competition of slow kinetic modes with a strong thermodynamic driving force that is caused by non-entropic interactions. The combination of both dynamic and thermodynamic effects causes qualitative differences in the concentration dependence of self-diffusion and interdiffusion coefficients. At high temperatures, the thermodynamic enhancement of interdiffusion prevails, while at low temperatures, kinetic effects dominate the concentration dependence, rationalized within MCT as the approach to its ideal-glass transition temperature TcT_c. The Darken equation relating self- and interdiffusion qualitatively reproduces the concentration-dependence in both Zr-Ni and Al-Ni, but quantitatively, the kinetic contributions to interdiffusion can be slower than the lower bound suggested by the Darken equation. As temperature is decreased, the agreement with Darken's equation improves, due to a strong coupling of all kinetic modes that is a generic feature predicted by MCT.Comment: 16 pages, 12 figure

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Comment on "Liquid-Liquid Phase Transition in Supercooled Yttria-Alumina"

    Get PDF
    A Comment on the Letter by Adrian C. Barnes et al., Phys. Rev. Lett. 103 225702 (2009). The authors of the Letter offer a Reply

    Computer modelling of a penetrator thermal sensor

    Get PDF
    The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures
    • 

    corecore